Skip to main content
AIAccelerators4nm (3rd Gen)2024NPUAI AcceleratorSamsungMobile AI4nm ProcessGenerative AIMemory OptimizationThermal Management
Samsung

Exynos 2400 NPU

A comprehensive technical analysis of Samsung's Exynos 2400 Neural Processing Unit, featuring heterogeneous architecture optimized for on-device generative AI workloads achieving 3.48 TOPS/mm² area efficiency.

7 min read
4nm (3rd Gen) process
Released 2024
Updated 1/16/2025

Key Performance Metrics

41.64 TOPS theoretical peak performance
3.48 TOPS/mm² area efficiency
16.3% thermal resistance improvement
30% frequency improvement over previous generation
2.37× average performance improvement across benchmarks

Architectural Highlights

  • Heterogeneous processing architecture with General and Shallow Tensor Engines
  • 6MB NPUMEM shared scratchpad memory with Q-cache optimization
  • FOWLP packaging for 16.3% thermal resistance improvement
  • 17,408 total MAC units across multiple processing engines

Technical Specifications

General Tensor Engine: 8,192 MAC units × 2
Shallow Tensor Engine: 512 MAC units × 2
Vector Engines: 4 × 32-way SIMD units
Maximum frequency: 1,196 MHz
Die area: 12 mm²
Memory hierarchy: NPUMEM (6MB), L1 Q-cache, L0 Q-cache

Innovative Features

  • Queue-based cache (Q-cache) with predictive prefetching
  • Three-dimensional tiling optimization framework
  • <SkewnessTooltip>Skewness analysis</SkewnessTooltip> for memory access pattern optimization
  • Dynamic thermal management with frequency scaling

1. Executive Summary

This document provides a comprehensive technical analysis of Samsung's Exynos 2400 Neural Processing Unit (NPU), featuring a heterogeneous architecture optimized for on-device generative AI workloads. The NPU achieves 3.48 TOPS/mm² area efficiency through innovative memory hierarchy design, thermal management solutions, and specialized processing engines.

2. 1. Architecture Overview and Mathematical Foundation

2.1 1.1 Heterogeneous Processing Architecture

The NPU implements a heterogeneous computing paradigm consisting of:

Processing Units Configuration:

  • General Tensor Engine (GTE): NMAC,GTE=8,192N_{MAC,GTE} = 8,192 MAC units
  • Shallow Tensor Engine (STE): NMAC,STE=512N_{MAC,STE} = 512 MAC units
  • Vector Engines (VE): NVE=4×32N_{VE} = 4 \times 32-way SIMD units
  • Total MAC Units: NMAC,total=2×NMAC,GTE+2×NMAC,STE=2×8,192+2×512=17,408N_{MAC,total} = 2 \times N_{MAC,GTE} + 2 \times N_{MAC,STE} = 2 \times 8,192 + 2 \times 512 = 17,408 MAC units

Memory Hierarchy:

  • NPUMEM: Mshared=6M_{shared} = 6 MB shared scratchpad memory
  • L1 Q-cacheQ-cache (Queuing Cache): Specialized cache that reduces miss penalties using predetermined access patterns. Features temporal decoupling, queue-based management, and predictive eviction. Enables latency hiding without complex scheduling - perfect for NPU workloads with predictable access patterns.: ML1M_{L1} per engine with queuing mechanism
  • L0 Q-cache: ML0M_{L0} per engine for immediate data access

2.2 1.2 Computational Complexity Analysis

Traditional CNN Operations: For a convolution layer with input dimensions (Hin,Win,Cin)(H_{in}, W_{in}, C_{in}) and kernel (Kh,Kw,Cout)(K_h, K_w, C_{out}):

MACoperations=Hout×Wout×Cout×Kh×Kw×CinMAC_{operations} = H_{out} \times W_{out} \times C_{out} \times K_h \times K_w \times C_{in}

Where: Hout=HinKh+2PS+1H_{out} = \frac{H_{in} - K_h + 2P}{S} + 1, Wout=WinKw+2PS+1W_{out} = \frac{W_{in} - K_w + 2P}{S} + 1

Transformer-based Operations: For self-attention mechanism with sequence length NN and hidden dimension dd:

MACattention=3×N×d2 (Q,K,V projections)+N2×d (attention computation)MAC_{attention} = 3 \times N \times d^2 \text{ (Q,K,V projections)} + N^2 \times d \text{ (attention computation)}

LLM Token Generation: Memory bandwidth requirement per token: BWrequired=WmodeltgenerationBW_{required} = \frac{W_{model}}{t_{generation}} Where WmodelW_{model} = model weight size (GB), tgenerationt_{generation} = time per token generation

3. 2. Memory Optimization and Q-Cache Mathematics

3.1 2.1 Queue-Based Cache Design

Traditional Cache Hit Rate: Hitratetraditional=i(Pi×Hi) for icache_linesHit_{rate_{traditional}} = \sum_{i}(P_i \times H_i) \text{ for } i \in cache\_lines

Q-Cache Hit Rate Enhancement: The Q-cache leverages predetermined access patterns: Hitrateqcache=Hitratebase+Δprefetch+ΔlocalityHit_{rate_{qcache}} = Hit_{rate_{base}} + \Delta_{prefetch} + \Delta_{locality}

Where:

  • Δprefetch\Delta_{prefetch}: Improvement from predictive prefetching
  • Δlocality\Delta_{locality}: Improvement from understanding temporal/spatial locality

Prefetch Efficiency: Efficiencyprefetch=TmissTprefetchTmiss×100%Efficiency_{prefetch} = \frac{T_{miss} - T_{prefetch}}{T_{miss}} \times 100\%

Where TmissT_{miss} = cache miss penalty, TprefetchT_{prefetch} = prefetch latency

3.2 2.2 Memory Access Pattern Optimization

Data Reuse Factor Calculation: For a given tile size and memory hierarchy: Reusefactor=Total_data_accessedData_loaded_from_external_memoryReuse_{factor} = \frac{Total\_data\_accessed}{Data\_loaded\_from\_external\_memory}

Bandwidth Utilization: BWutilization=MACoperations×PrecisionBWavailable×TimeexecutionBW_{utilization} = \frac{MAC_{operations} \times Precision}{BW_{available} \times Time_{execution}}

Memory Efficiency Metric: Memoryefficiency=Operations_per_byte=MACopsBytes_transferredMemory_{efficiency} = Operations\_per\_byte = \frac{MAC_{ops}}{Bytes\_transferred}

4. 3. Skewness Analysis and Tiling Mathematics

4.1 3.1 Skewness Definition and Calculation

Matrix Skewness: For matrices A(M×K)A(M \times K) and B(K×N)B(K \times N): Skewness=max(M×K,K×N)min(M×K,K×N)Skewness = \frac{\max(M \times K, K \times N)}{\min(M \times K, K \times N)}

Minimum Reuse Factor: Reusemin=BWinputBWoutputReuse_{min} = \frac{BW_{input}}{BW_{output}}

Where BWinputBW_{input} and BWoutputBW_{output} are the bandwidth requirements for input and output data flows.

4.2 3.2 Three-Dimensional Optimization Framework

Memory Constraint Equation: MtileMavailableM_{tile} \leq M_{available}

Where: Mtile=Minput+Mweight+Moutput+MintermediateM_{tile} = M_{input} + M_{weight} + M_{output} + M_{intermediate} Mtile=(Htile×Wtile×Cin)+(Kh×Kw×Cin×Cout)+(Hout×Wout×Cout)+MbufferM_{tile} = (H_{tile} \times W_{tile} \times C_{in}) + (K_h \times K_w \times C_{in} \times C_{out}) + (H_{out} \times W_{out} \times C_{out}) + M_{buffer}

Optimization Objective: maximize: Reusefactor(Htile,Wtile,Ctile)\text{maximize: } Reuse_{factor}(H_{tile}, W_{tile}, C_{tile}) subject to: MtileMbudget\text{subject to: } M_{tile} \leq M_{budget} HtileHmax,WtileWmax,CtileCmaxH_{tile} \leq H_{max}, W_{tile} \leq W_{max}, C_{tile} \leq C_{max}

Greedy TilingAdvanced Tiling: Hierarchical L2/L1 approach where L2 tiles fit 6MB NPUMEM and L1 tiles optimize Q-cache usage. Enables tile-level pipelining between TEs and VEs, with engine-specific optimizations (GTE for compute-intensive, STE for memory-intensive operations). Algorithm:

for each tiling iteration:
    candidates = {tile_H/2, tile_W/2, tile_C/2}
    select argmax(Reuse_factor(candidate)) 
    update tile_size

5. 4. Performance Analysis and Calculations

5.1 4.1 Throughput Calculations

Peak Theoretical Performance: TOPStheoretical=NMAC,total×fclock×2×1012TOPS_{theoretical} = N_{MAC,total} \times f_{clock} \times 2 \times 10^{-12}

Where fclockf_{clock} = maximum frequency (1,196 MHz) TOPStheoretical=17,408×1.196×109×2×1012=41.64 TOPSTOPS_{theoretical} = 17,408 \times 1.196 \times 10^9 \times 2 \times 10^{-12} = 41.64 \text{ TOPS}

Area Efficiency: Areaefficiency=TOPSmeasuredAreadie=41.64 TOPS12 mm2=3.47 TOPS/mm2Area_{efficiency} = \frac{TOPS_{measured}}{Area_{die}} = \frac{41.64 \text{ TOPS}}{12 \text{ mm}^2} = 3.47 \text{ TOPS/mm}^2

Measured Performance (1,196 MHz):

  • MobileNetEdgeTPU: Performancenew=1.81×PerformancebaselinePerformance_{new} = 1.81 \times Performance_{baseline}
  • MobileDet: Performancenew=2.37×PerformancebaselinePerformance_{new} = 2.37 \times Performance_{baseline}
  • Mosaic: Performancenew=2.65×PerformancebaselinePerformance_{new} = 2.65 \times Performance_{baseline}

5.2 4.2 Memory Bandwidth Analysis

Required Memory Bandwidth: BWrequired=Input_data+Weight_data+Output_dataExecution_timeBW_{required} = \frac{Input\_data + Weight\_data + Output\_data}{Execution\_time}

For EDSR Network: ThroughputEDSR=140.3 inferences/secondThroughput_{EDSR} = 140.3 \text{ inferences/second} BWeffective=Data_per_inference×ThroughputEDSRBW_{effective} = Data\_per\_inference \times Throughput_{EDSR}

For LVM U-net: ThroughputUnet=8.3 inferences/secondThroughput_{Unet} = 8.3 \text{ inferences/second} Model_complexityUnet>Model_complexityEDSR (due to lower throughput)Model\_complexity_{Unet} > Model\_complexity_{EDSR} \text{ (due to lower throughput)}

6. 5. Thermal Management and Packaging Analysis

6.1 5.1 Thermal Resistance Calculations

Junction Temperature Equation: Tjunction=Tambient+Pdissipated×RthermalT_{junction} = T_{ambient} + P_{dissipated} \times R_{thermal}

Thermal Resistance Improvement: Rthermal,FOWLP=13.83°C/WR_{thermal,FOWLP} = 13.83°C/W Rthermal,IPoP=16.52°C/WR_{thermal,I-PoP} = 16.52°C/W Improvement=16.5213.8316.52×100%=16.3%Improvement = \frac{16.52 - 13.83}{16.52} \times 100\% = 16.3\%

Power Density: Powerdensity=PtotalAreadie=Ptotal12 mm2Power_{density} = \frac{P_{total}}{Area_{die}} = \frac{P_{total}}{12 \text{ mm}^2}

6.2 5.2 Process Technology Impact

3rd Generation 4nm Improvements: PerformancegainRO=11% (Ring Oscillator frequency improvement)Performance_{gain_{RO}} = 11\% \text{ (Ring Oscillator frequency improvement)}

Effective Capacitance Reduction: Ceff,new=Ceff,old×(1αimprovement)C_{eff,new} = C_{eff,old} \times (1 - \alpha_{improvement})

Resistance Reduction: Reff,new=Reff,old×(1βimprovement)R_{eff,new} = R_{eff,old} \times (1 - \beta_{improvement})

Combined Performance Impact: fmax,new=fmax,old×(1+0.11)×(1+γthermal)=fmax,old×1.30f_{max,new} = f_{max,old} \times (1 + 0.11) \times (1 + \gamma_{thermal}) = f_{max,old} \times 1.30

Where γthermal=19%\gamma_{thermal} = 19\% improvement from FOWLP thermal enhancement.

6.3 5.3 Dynamic Thermal Management

Frequency Scaling Equation: fscaled=fmax×TmaxTcurrentTmaxTambientf_{scaled} = f_{max} \times \frac{T_{max} - T_{current}}{T_{max} - T_{ambient}}

Power-Performance Relationship: Pdynamic=α×Cload×Vdd2×fclockP_{dynamic} = \alpha \times C_{load} \times V_{dd}^2 \times f_{clock}

Where α\alpha = switching activity factor, CloadC_{load} = load capacitance

7. 6. Energy Efficiency and Power Analysis

7.1 6.1 Power Consumption Modeling

Dynamic Power: Pdynamic=i(NMAC,i×fi×Vi2×αi×Ci)P_{dynamic} = \sum_{i}(N_{MAC,i} \times f_i \times V_i^2 \times \alpha_i \times C_i)

For each processing engine type ii.

Static Power: Pstatic=Vdd×IleakageP_{static} = V_{dd} \times I_{leakage}

Total Power: Ptotal=Pdynamic+Pstatic+PioP_{total} = P_{dynamic} + P_{static} + P_{io}

7.2 6.2 Energy per Operation

Energy per MAC Operation: EMAC=PaverageMACutilization×fclock×NMAC,activeE_{MAC} = \frac{P_{average}}{MAC_{utilization} \times f_{clock} \times N_{MAC,active}}

Energy per Inference: Einference=Paverage×tinferenceE_{inference} = P_{average} \times t_{inference}

Comparison with Previous Generation: Efficiencyimprovement=Eper_op,2200Eper_op,2400Efficiency_{improvement} = \frac{E_{per\_op,2200}}{E_{per\_op,2400}}

8. 7. Mathematical Verification and Benchmarking

8.1 7.1 MLPerf Performance Verification

Normalized Performance Score: Scorenormalized=Operations_per_secondReference_implementationScore_{normalized} = \frac{Operations\_per\_second}{Reference\_implementation}

Efficiency Metrics: Operations_per_Watt=TOPSmeasuredPmeasuredOperations\_per\_Watt = \frac{TOPS_{measured}}{P_{measured}} Operations_per_mm2=TOPSmeasuredAreadieOperations\_per\_mm^2 = \frac{TOPS_{measured}}{Area_{die}}

8.2 7.2 Memory Hierarchy Validation

Cache Hit Rate Measurement: Hitrate=Cache_hitsCache_hits+Cache_missesHit_{rate} = \frac{Cache\_hits}{Cache\_hits + Cache\_misses}

Average Memory Access Time: AMAT=Hittime+Missrate×MisspenaltyAMAT = Hit_{time} + Miss_{rate} \times Miss_{penalty}

Memory Wall Mitigation Factor: Mitigationfactor=AMATbaselineAMAToptimizedMitigation_{factor} = \frac{AMAT_{baseline}}{AMAT_{optimized}}

9. 8. Workload-Specific Analysis

9.1 8.1 Large Language Model Optimization

Token Generation Rate: Tokens_per_second=feffectiveCycles_per_tokenTokens\_per\_second = \frac{f_{effective}}{Cycles\_per\_token}

Memory Bandwidth Utilization: BWutilization_LLM=Model_size×Tokens_per_secondBWavailableBW_{utilization\_LLM} = \frac{Model\_size \times Tokens\_per\_second}{BW_{available}}

9.2 8.2 Large Visual Model Performance

Image Generation Throughput: For Stable Diffusion U-net: Images_per_second=8.3 (measured)Images\_per\_second = 8.3 \text{ (measured)} Cycles_per_image=fclockImages_per_second=1.196×1098.3=1.44×108 cyclesCycles\_per\_image = \frac{f_{clock}}{Images\_per\_second} = \frac{1.196 \times 10^9}{8.3} = 1.44 \times 10^8 \text{ cycles}

Computational Intensity: Intensity=Operations_per_imageBytes_per_imageIntensity = \frac{Operations\_per\_image}{Bytes\_per\_image}

10. 9. Comparative Analysis and Industry Position

10.1 9.1 Performance Density Comparison

Area Efficiency Benchmark: Efficiencyratio=TOPS_per_mmSamsung2TOPS_per_mmcompetitor2Efficiency_{ratio} = \frac{TOPS\_per\_mm^2_{Samsung}}{TOPS\_per\_mm^2_{competitor}}

Power Efficiency: TOPS_per_Watt=Peak_TOPSTDPTOPS\_per\_Watt = \frac{Peak\_TOPS}{TDP}

10.2 9.2 Technology Scaling Benefits

Process Node Advantage: Transistor_density4nm=2×Transistor_density5nm (approximate)Transistor\_density_{4nm} = 2 \times Transistor\_density_{5nm} \text{ (approximate)} Performance_per_area_gain1.4× (considering design optimizations)Performance\_per\_area\_gain \approx 1.4\times \text{ (considering design optimizations)}

11. 10. Future Implications and Technology Roadmap

11.1 10.1 Scalability Analysis

Next Generation Projections: TOPS3nmTOPS4nm×1.5 (process scaling)TOPS_{3nm} \approx TOPS_{4nm} \times 1.5 \text{ (process scaling)} Efficiency3nmEfficiency4nm×1.3 (architectural improvements)Efficiency_{3nm} \approx Efficiency_{4nm} \times 1.3 \text{ (architectural improvements)}

11.2 10.2 Emerging Workload Considerations

Multi-modal AI Requirements: BWmultimodal=BWtext+BWimage+BWaudio+BWsynchronizationBW_{multimodal} = BW_{text} + BW_{image} + BW_{audio} + BW_{synchronization}

Real-time Constraints: Latencytotal=Latencycompute+Latencymemory+LatencycommunicationLatencybudgetLatency_{total} = Latency_{compute} + Latency_{memory} + Latency_{communication} \leq Latency_{budget}

12. Conclusion

The Samsung Exynos 2400 NPU represents a significant advancement in mobile AI processing, achieving 3.48 TOPS/mm² through innovative heterogeneous architecture, advanced memory hierarchy with Q-caches, and superior thermal management via FOWLP packaging. The mathematical analysis reveals optimized data flow patterns, efficient resource utilization, and substantial performance improvements over previous generations.

Key Mathematical Results:

  • 41.64 TOPS theoretical peak performance
  • 16.3% thermal resistance improvement
  • 30% frequency improvement through combined process and packaging enhancements
  • 2.37× average performance improvement across benchmarks

This NPU enables sophisticated on-device generative AI applications while maintaining mobile power constraints and thermal limits.

13. References

[1] A. Vaswani, et al., "Attention Is All You Need", NeurIPS, 2017. [2] A. Dubey, et al., "The Llama3 Herd of Models", ArXiv, 2024. [3] R. Rombach, et al., "High-resolution image synthesis with latent diffusion models", ArXiv, 2021. [4] J.R. Stevens, et al., "Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers", DAC, 2021.

Document compiled from "An On-Device Generative AI Focused Neural Processing Unit in 4nm Flagship Mobile SoC with Fan-Out Wafer-Level Package" by Park et al., IEEE ISSCC 2025.